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Abstract. Let G = (V,E) be a (p, q)-graph. A bijection f : E →
{1, 2, 3, . . . , q} is called an edge-prime labeling if for each edge uv in E,

we have GCD(f+(u), f+(v)) = 1 where f+(u) =
∑

uw∈E f(uw). More-

over, a bijection f : E → {1, 2, 3, . . . , q} is called a semi-edge-prime la-

beling if for each edge uv in E, we have GCD(f+(u), f+(v)) = 1 or

f+(u) = f+(v). A graph that admits an edge-prime (or a semi-edge-

prime) labeling is called an edge-prime (or a semi-edge-prime) graph. In

this paper we determine the necessary and/or sufficient condition for the

existence of (semi-) edge-primality of bipartite and tripartite graphs.
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1. Introduction

Let G = (V (G), E(G)) (or G = (V,E) for short if not ambiguous) be a simple,

finite and undirected graph of order |V | = p and size |E| = q. All notation not

defined in this paper can be found in [1].

The concept of prime labeling was originated by Entringer and it was intro-

duced in a paper by Tout et al. [8]. A graph G with p vertices and q edges is

said to have a prime labeling if f : V → {1, 2, . . . , p} is bijective and for every

edge e = uv of G, GCD(f(u), f(v)) = 1. If there is no ambiguous, we use (a, b)

instead of GCD(a, b). Currently, the two most prominent open conjectures

involving vertex labelings are the following:

(1) All tree graphs have a prime vertex labeling (Entringer-Tout Conjecture);

(2) All unicyclic graphs have a prime vertex labeling (Seoud and Youssef [7]).

In 2011, Haxell and Pikhurko [4] proved that all large trees are prime. In

1991, Deretsky et al. [2] introduced the notion of dual of prime labeling which

is known as vertex prime labeling. A graph with q edges has vertex prime

labeling if its edges can be labeled with distinct integers {1, 2, . . . , q} such that

for each vertex of degree at least two the greatest common divisor of the labels

on its incident edges is 1. For convenience, we will use [a, b] to denote the set

of integers between a and b inclusively.

A conjecture: “Any 2-regular graph has a vertex prime labeling if and only if

it does not have two odd cycles.” was proposed.

An excellent survey on graph labeling is maintained by Gallian [5]. In this

paper, we introduce a variant of prime labeling of graphs.

Definition 1.1. Let G = (V,E) be a (p, q)-graph. A bijection f : E → [1, q] is

called an edge-prime labeling if for each edge uv in E, we have (f+(u), f+(v)) =

1, where f+(u) =
∑

uv∈E f(uw). A graph that admits an edge-prime labeling

is called an edge-prime graph.

Note that this is not a generalization of integer-magic spectra [6] and Bary-

Centric Labeling [9]. In Section 2, we obtained a necessary and sufficient con-

dition for disjoint union of path to be edge-prime. We also proved that all

2-regular graphs are edge-prime. In Sections 3 and 4, we proved that many

bipartite and tripartite graphs are edge-prime (or not edge-prime). In Section

5, we defined semi-edge-prime and show that certain bipartite and tripartite

graphs are semi-edge-prime graphs.

2. Edge-Prime Labelings of Some Simplest Graphs

Lemma 2.1. Suppose e1, e2, e3 are any 3 successive edges of a graph such

that the end-vertices of e2 = uv are of degree 2. If there exist an edge labeling

f such that f(e1)+f(e2) and f(e2)+f(e3) are not both even, and that |f(e1)−
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On (Semi-) Edge-Primality of Graphs 3

f(e3)| = 2m, m ≥ 0, then the induced vertex labels of the 2 end-vertices of e2
are relatively prime.

Proof. Without loss of generality, assume that f(e1) > f(e3). The given la-

beling f guarantees that (f+(u), f+(v)) = (f(e1) + f(e2), f(e2) + f(e3)) =

(f(e1)− f(e3), f(e2) + f(e3)) = (2m, f(e2) + f(e3)). If f(e2) + f(e3) is odd, we

have (2m, f(e2) + f(e3)) = 1. Otherwise, we must have f(e1) + f(e2) is odd

and m = 0 so that (2m, f(e2) + f(e3)) = (1, f(e2) + f(e3)) = 1. Hence, the

lemma holds. �

Theorem 2.2. Let G be the disjoint union of paths. Then G is edge-prime if

and only if it has at most one component of P2.

Proof. (Sufficiency) List all the path(s) from the shortest length to the longest

length. Label the consecutive edges of each path from 1 to |E(G)| such that

every 2 adjacent edge labels must differ by 1. By Lemma 2.1, the induced

vertex labels of every 2 adjacent internal vertices are relatively prime. It is

also easy to verify that the induced vertex labels of each pendant vertex and

its adjacent vertex are relatively prime.

(Necessity) We prove by contrapositive. If G has at least 2 components of P2,

then a P2 will have its edge labeled by integer > 1. Such a labeling is not

edge-prime. �

Corollary 2.3. A 1-regular graph is edge-prime if and only if it is K2.

Theorem 2.4. All 2-regular graphs are edge-prime.

Proof. Let G =
j∑

i=1

Cni be a 2-regular graph which is the disjoint union of

ni-cycles, 1 ≤ i ≤ j. Without loss of generality, assume that 3 ≤ n1 ≤ n2 ≤
· · · ≤ nj . We shall label Cn1

by using the first n1 integers, and label Cn2
by

the next n2 integers and so on. Suppose a+1 ≥ 1 is the smallest available edge

label for a cycle Cn. Let e1, e2, . . . , en be successive edges in Cn. Consider the

following four cases.

(1) Suppose n = 4k for some k ≥ 1. Label the 4 successive edges of C4 by

a+ 1, a+ 2, a+ 3, a+ 4 if k = 1. Suppose k ≥ 2. Define σ : {ei | 1 ≤ i ≤
2k} → [a+ 1, a+ 4k] by σ(ei+4) = σ(ei) + 8 for 1 ≤ i ≤ 2k− 4 with initial

values σ(e1) = a+ 1, σ(e2) = a+ 2, σ(e3) = a+ 5 and σ(e4) = a+ 6. Also

define σ : {ei | 2k+ 1 ≤ i ≤ 4k} → [a+ 1, a+ 4k] by σ(ei+4) = σ(ei)−8 for

2k + 1 ≤ i ≤ 4k − 4 with initial values σ(e2k+1) = a+ 4k − 1, σ(e2k+2) =

a+ 4k, σ(e2k+3) = a+ 4k − 5 and σ(e2k+4) = a+ 4k − 4. One may check

that σ : E(C4k)→ [a+ 1, a+ 4k] is a bijection.

(2) Suppose n = 4k + 1 for some k ≥ 1. Label the 5 successive edges of C5

by a + 1, a + 4, a + 5, a + 2, a + 3 if k = 1. Suppose k ≥ 2. Define

σ : {ei | 2 ≤ i ≤ 2k + 1} → [a + 1, a + 4k + 1] by σ(ei+4) = σ(ei) + 8
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for 2 ≤ i ≤ 2k − 3 with initial values σ(e2) = a + 4, σ(e3) = a + 5,

σ(e4) = a+8 and σ(e5) = a+9. Also define σ : {ei | 2k+2 ≤ i ≤ 4k+1} →
[a+ 1, a+ 4k+ 1] by σ(ei+4) = σ(ei)−8 for 2k+ 2 ≤ i ≤ 4k−3 with initial

values σ(e2k+2) = a+ 4k− 2, σ(e2k+3) = a+ 4k− 1, σ(e2k+4) = a+ 4k− 6

and σ(e2k+5) = a + 4k − 5. Finally define σ(e1) = a + 1. One may check

that σ : E(C4k+1)→ [a+ 1, a+ 4k + 1] is a bijection.

(3) Suppose n = 4k + 2 for some k ≥ 1. Label the 6 successive edges of C6 by

a + 1, a + 4, a + 3, a + 2, a + 5, a + 6 if k = 1. Suppose k ≥ 2. Define

σ : {ei | 3 ≤ i ≤ 2k + 2} → [a + 1, a + 4k + 2] by σ(ei+4) = σ(ei) + 8

for 3 ≤ i ≤ 2k − 2 with initial values σ(e3) = a + 3, σ(e4) = a + 4,

σ(e5) = a+7 and σ(e6) = a+8. Also define σ : {ei | 2k+3 ≤ i ≤ 4k+2} →
[a+ 1, a+ 4k+ 2] by σ(ei+4) = σ(ei)−8 for 2k+ 3 ≤ i ≤ 4k−2 with initial

values σ(e2k+3) = a+ 4k+ 1, σ(e2k+4) = a+ 4k+ 2, σ(e2k+5) = a+ 4k− 3

and σ(e2k+6) = a+ 4k− 2. Finally define σ(e1) = a+ 1 and σ(e2) = a+ 2.

One may check that σ : E(C4k+2)→ [a+ 1, a+ 4k + 2] is a bijection.

(4) Suppose n = 4k + 3 for some k ≥ 0. If n = 3, then label the 3 edges

of C3 by a + 1, a + 2, a + 3. If n = 7, then label the 7 edges of C7 by

a + 1, a + 2, a + 3, a + 4, a + 7, a + 5, a + 6. Suppose k ≥ 2. Define

σ : {ei | 4 ≤ i ≤ 2k + 3} → [a + 1, a + 4k + 3] by σ(ei+4) = σ(ei) + 8 for

4 ≤ i ≤ 2k−1 with initial values σ(e4) = a+4, σ(e5) = a+7, σ(e6) = a+8

and σ(e7) = a + 11. Also define σ : {ei | 2k + 4 ≤ i ≤ 4k + 3} →
[a+ 1, a+ 4k+ 3] by σ(ei+4) = σ(ei)−8 for 2k+ 4 ≤ i ≤ 4k−1 with initial

values σ(e2k+4) = a+ 4k+ 1, σ(e2k+5) = a+ 4k+ 2, σ(e2k+6) = a+ 4k− 3

and σ(e2k+7) = a+ 4k− 2. Finally define σ(e1) = a+ 1, σ(e2) = a+ 2 and

σ(e3) = a+ 3. One may check that σ : E(C4k+3)→ [a+ 1, a+ 4k + 3] is a

bijection.

By Lemma 2.1, the labeling above is edge-prime. �

Example 2.5. Let G = C3 + C8 + C9 + C10 + C11. We label the components

of G as follows:

(1) Label the 3 successive edges of C3 by 1, 2, 3.

(2) Label the 8 successive edges of C8 by 4, 5, 8, 9, 10, 11, 6, 7.

(3) Label the 9 successive edges of C9 by 12, 15, 16, 19, 20, 17, 18, 13, 14.

(4) Label the 10 successive edges of C10 by 21, 22, 23, 24, 27, 28, 29, 30, 25,

26.

(5) Label the 11 successive edges of C11 by 31, 32, 33, 34, 37, 38, 41, 39, 40,

35, 36.

It is readily verified that the labeling is edge-prime.

From the proof of Theorem 2.4, we have

Theorem 2.6. If G is edge-prime, then G+ Cn is edge-prime.
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Proof. Let f be an edge-prime labeling of G and h be an edge-prime labeling

of Cn as defined in Theorem 2.4. Define an edge labeling g of G+Cn such that

g(e) = f(e) if e ∈ E(G), and g(e) = h(e) + |E(G)| otherwise. Clearly, g is an

edge-prime labeling. �

Corollary 2.7. If G is edge-prime, then G + H is edge-prime, where H is a

2-regular graph.

We note that under the edge-prime labeling defined in the proof of Theorem 2.4

by choosing a = 0, all the induced vertex labels of C4 and C6 are prime. We

now give edge-prime labelings of even cycles of order at most 34 such that all

the induced vertex labels are primes.

n Labels of successive edges of Cn

8 1, 2, 5, 8, 3, 4, 7, 6

10 1, 2, 5, 8, 3, 10, 9, 4, 7, 6

12 1, 2, 5, 12, 11, 8, 3, 10, 9, 4, 7, 6

14 1, 2, 5, 14, 3, 8, 11, 12, 7, 4, 9, 10, 13, 6

16 1, 2, 5, 14, 15, 16, 3, 8, 11, 12, 7, 4, 9, 10, 13, 6

18 1, 2, 5, 14, 15, 16, 3, 8, 11, 18, 13, 10, 9, 4, 7, 12, 17, 6

20 1, 2, 5, 14, 15, 16, 3, 8, 11, 18, 13, 10, 19, 20, 9, 4, 7, 12, 17, 6

22 1, 2, 5, 14, 15, 16, 3, 8, 11, 18, 13, 10, 19, 22, 21, 20, 9, 4, 7, 12, 17, 6

24 1, 2, 5, 24, 17, 12, 7, 4, 9, 20, 21, 22, 19, 10, 13, 18, 11, 8, 3, 16, 15, 14,

23, 6

26 1, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 10, 9, 14, 23, 20, 3, 26, 15,

22, 7, 6, 17, 12

28 1, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 28, 9, 10, 27, 14, 23, 20, 3,

26, 15, 22, 7, 6, 17, 12

30 1, 30, 29, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 28, 9, 10, 27, 14, 23,

20, 3, 26, 15, 22, 7, 6, 17, 12

32 1, 30, 29, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 28, 31, 10, 9, 32, 27,

14, 23, 20, 3, 26, 15, 22, 7, 6, 17, 12

34 1, 30, 29, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 28, 31, 10, 33, 34, 9,

32, 27, 14, 23, 20, 3, 26, 15, 22, 7, 6, 17, 12

Similarly, it is easy to verify that each odd cycle of order up to 11 admits an

edge-prime labeling such that all but one induced vertex labels are prime.

Conjecture 2.1. There exist edge-prime labelings for even cycles such that

all induced vertex labels are primes, and for odd cycles such that all but one

induced vertex labels are prime.

3. Edge-Prime Labelings of Some Bipartite and Tripartite Graphs

The following useful lemma can be found in any book of number theory:

 [
 D

O
I:

 1
0.

75
08

/ij
m

si
.2

01
7.

2.
00

1 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
24

-0
5-

06
 ]

 

                             5 / 14

http://dx.doi.org/10.7508/ijmsi.2017.2.001
http://ijmsi.com/article-1-924-fa.html


6 W.-C. Shiu, G.-C. Lau, S.-M. Lee

Lemma 3.1. For any integers a, b, c,

1. (a, b) = (a,−b) = (a+ bc, b);

2. if (a, b) = (a, c) = 1, then (a, bc) = 1.

Let (X,Y ) be the bipartition of K(2, n), where X = {x1, x2} and Y = {yj | 1 ≤
j ≤ n}. Define σn : E(K(2, n))→ [1, 2n] by σn(x1yj) = 2j− 1 and σn(x2yj) =

2n + 2 − 2j, 1 ≤ j ≤ n. Then σ+
n (yj) = 2n + 1 for all j, σ+

n (x1) = n2 and

σ+
n (x2) = n2 + n. The labeling σn is called the basic labeling of K(2, n).

Lemma 3.2. Keep the notation defined above. Suppose a ∈ Z. Let f :

E(K(2, n)) → [a + 1, a + 2n], where f = σn + a. If (n, 2a + 1) = 1, then

(f+(xi), f
+(yj)) = 1 for 1 ≤ j ≤ n and i = 1, 2.

Proof. Clearly f+(x1) = n(n+ a), f+(x2) = n2 + n+ na and f+(yj) = 2(n+

a) + 1.

By Lemma 3.1 and the hypothesis we have (n+a, 2(n+a)+1) = 1 and (n, 2n+

2a + 1) = (n, 2a + 1) = 1. By Lemma 3.1 again we have (f+(x1), f+(yj)) =

(n(n+ a), 2(n+ a) + 1) = 1 for all j.

Similarly, (f+(x2), f+(yj)) = (n2 +n+na, 2n+ 2a+ 1) = (−n2−na, 2n+ 2a+

1) = (n(n+ a), 2(n+ a) + 1) = 1 for all j. �

Theorem 3.3. The disjoint union of m complete bipartite graph K(2, n)’s,

mK(2, n), is edge-prime for m,n ≥ 1.

Proof. Let Gi
∼= K(2, n), 1 ≤ i ≤ m. By using the basic labeling of K(2, n)

we define fi : E(Gi) → [2(i − 1)n + 1, 2in], where fi = σn + 2(i − 1)n, 1 ≤
i ≤ m. Let the combining labeling for the whole graph mK(2, n) be f . Since

(4(i−1)n+1, n) = 1, by Lemma 3.2 we obtain that f is an edge-prime labeling.

�

Theorem 3.4. For n ≥ 1,
n∑

k=1

K(2, k) is edge-prime.

Proof. Label K(2, k) by σk +k(k−1), 1 ≤ k ≤ n. We can see that the labeling

is a bijection from E(
n∑

k=1

K(2, k))→ [1, n(n+ 1)]. Since (k, 2k(k− 1) + 1) = 1,

by Lemma 3.2 we have the theorem. �

Conjecture 3.1.
m∑
i=1

K(2, ni) is edge-prime, where m ≥ 2.

For 1 ≤ i ≤ m, let Gi
∼= K(2, ni) with bipartition (Xi, Yi), where Xi =

{xi−1, xi}, Yi = {yi,1, . . . , yi,ni
} and x0 = xm. Let B(n1, . . . , nm) =

m⋃
i=1

Gi. If

n1 = · · · = nm = n, then we denote the sequence n1, n2, . . . , nm by n[m] for

short. Note that B(1[m]) = C2m.

Theorem 3.5. Suppose (m − 1, 2n + 1) = 1 where m ≥ 2 and n ≥ 1. The

bipartite graph B(n[m]) is edge-prime.
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Proof. Keep the notation defined above. Label Gi by σn + 2(i − 1)n, where

σn is the basic labeling of K(2, n). Let the combining labeling be f . Then

f+(xi) = (n2 + n + 2(i − 1)n2) + (n2 + 2in2) = 4in2 + n for 1 ≤ i ≤ m − 1;

f+(x0) = (n2+n+2(m−1)n2)+(n2) = 2mn2+n; and f+(yi,j) = 4in−2n+1,

for all j.

Since (n, 4in ± 2n + 1) = 1 and (4in + 1, 4in ± 2n + 1) = (4in + 1,±2n) = 1,

(f+(xi), f
+(yi,j)) = (4in2 + n, 4in − 2n + 1) = 1 and (f+(xi), f

+(yi+1,j)) =

(4in2 + n, 4in+ 2n+ 1) = 1 for 1 ≤ i ≤ m− 1.

Finally, from the hypothesis, (2mn + 1, 2n + 1) = (1 − m, 2n + 1) = 1 and

(2mn + 1, 4mn − 2n + 1) = (2mn + 1,−2n − 1) = (2mn + 1, 2n + 1) = 1,

(f+(x0), f+(y1,j)) = (2mn2+n, 2n+1) = 1 and (f+(x0), f+(ym,j)) = (2mn2+

n, 4mn− 2n+ 1) = 1. �

Conjecture 3.2. B(n[m]) is edge-prime, where m ≥ 2, n ≥ 2.

The generalized theta graph θ(s1, . . . , sk) consists of a pair of end vertices joined

by k ≥ 3 internally disjoint paths of lengths s1, . . . , sk ≥ 1.

Theorem 3.6. For n ≥ 3, the generalized theta graph θ(3[n]) is edge-prime.

Proof. Let G = θ(3[n]) with V (G) = {u, x, vi, wi | 1 ≤ i ≤ n} and E(G) =

{uvi, viwi, wix | 1 ≤ i ≤ n}. Define a labeling f as follows:

(1) f(uvi) = i for 1 ≤ i ≤ n;

(2) f(viwi) = 2n+ 1− i for 1 ≤ i ≤ n;

(3) f(wix) = 2n+ i for 1 ≤ i ≤ n.

Clearly, f+(u) = n(n + 1)/2, f+(vi) = 2n + 1, f+(wi) = 4n + 1 and f+(x) =

n(5n + 1)/2. It can be verified that (f+(vi), f
+(wi)) = (f+(u), f+(vi)) =

(f+(wi), f
+(x)) = 1. Hence, f is an edge-prime labeling. �

Theorem 3.7. For n ≥ 3, the generalized theta graph θ(4[n]) is edge-prime.

Proof. Let G = θ(4[n]) with V (G) = {u, y, vi, wi, xi | 1 ≤ i ≤ n} and E(G) =

{uvi, viwi, wixi, xiy | 1 ≤ i ≤ n}. Define a labeling f similarly to that of

Theorem 3.6:

(1) f(uvi) = i for 1 ≤ i ≤ n;

(2) f(viwi) = 2n+ 1− i for 1 ≤ i ≤ n;

(3) f(wixi) = 2n+ i for 1 ≤ i ≤ n;

(4) f(xiy) = 4n+ 1− i for 1 ≤ i ≤ n.

Clearly, f+(u) = n(n + 1)/2, f+(vi) = 2n + 1, f+(wi) = 4n + 1, f+(xi) =

6n + 1 and f+(y) = n(7n + 1)/2. It can be verified that (f+(vi), f
+(wi)) =

(f+(wi), f
+(xi)) = (f+(u), f+(vi)) = (f+(xi), f

+(y)) = 1. Hence, f is an

edge-prime labeling. �

Theorem 3.8. The generalized theta graph θ(n, n, n) is edge-prime for n ≥ 2.
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Proof. For n = 2, 3, 4, the results follow from Theorems 3.3, 3.6 and 3.7. We

may assume n ≥ 5. Let V (θ(n, n, n)) = {x, y, ui, vi, wi | 1 ≤ i ≤ n− 1} and
E(θ(n, n, n)) = {xu1, xv1, xw1, un−1y, vn−1y, wn−1y}

∪ {uiui+1, vivi+1, wiwi+1 | 1 ≤ i ≤ n− 2}.
Define a labeling f as follows:

(a) f(xu1) = 1, f(xv1) = 2, f(xw1) = 3;

(b) f(ui−1ui) = 3i, f(vi−1vi) = 3i− 1, f(wi−1wi) = 3i− 2 for even i ≥ 2;

(c) f(ui−1ui) = 3i− 2, f(vi−1vi) = 3i− 1, f(wi−1wi) = 3i for odd i ≥ 3.

(d) f(un−1y) = 3n, f(vn−1y) = 3n − 1, f(wn−1y) = 3n − 2 if n is even;

f(un−1y) = 3n− 2, f(vn−1y) = 3n− 1, f(wn−1y) = 3n if n is odd.

Observe that f+(x) = 6, f+(ui) = f+(vi) = f+(wi) = 6i + 1 for 1 ≤ i ≤
n − 1, f+(y) = 9n − 3. Clearly, (f+(x), f+(u1)) = 1. For 1 ≤ i ≤ n − 2,

(f+(ui), f
+(ui+1)) = (6i + 1, 6i + 7) = (6i + 1, 6) = (1, 6) = 1. Moreover,

(f+(un−1), f+(y)) = (6n − 5, 9n − 3) = (6n − 5, 3n + 2) = (3n − 7, 3n + 2) =

(3n − 7, 9) = 1 since 3n − 7 is not a multiple of 3. Hence, f is an edge-prime

labeling. �

Conjecture 3.3. All generalized theta graphs are edge-prime.

4. Edge-Prime Labelings of Some Trees

Definition 4.1. For n ≥ 1, the star St(n) is called the graph of diameter 2

with n edges attach to the apex vertex c.

Definition 4.2. The n-galaxy St(a1, a2, . . . , an) is called the disjoint union of

n ≥ 2 stars St(ai), i = 1, 2, . . . , n.

Theorem 4.3. The star St(n) is edge-prime if and only if n ≤ 2.

Proof. The sufficiency is obvious. Suppose n ≥ 3. Let c be the apex vertex and

let f be an edge-prime labeling of St(n). Clearly, f+(c) = n(n + 1)/2. If n is

odd, then (n, n(n+ 1)/2) = n; and if n is even, then (n/2, n(n+ 1)/2) = n/2.

Hence, St(n) is not edge-prime. �

Theorem 4.4. The galaxy St(1, n) is edge-magic if and only if n ≤ 2.

Proof. The sufficiency is obvious. Suppose n ≥ 3 and St(1, n) is edge-prime.

Then we must label the component K2 by 1 and all other edges by 2 to n+ 1.

The apex vertex of St(n) component has label n(n + 3)/2. If n is odd, then

(n, n(n+ 3)/2) = n. If n is even, then (n/2, n(n+ 3)/2) = n/2. Hence, St(1, n)

is not edge-prime. �

Theorem 4.5. For m ≥ n and m + n ≡ 1 (mod 4), the galaxy St(n,m) is

edge-prime only if m ≥ n+ 1 ≥ 3 is odd, and all the edges of St(n) receive odd

labels.
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Proof. Let m + n = 4k + 1. Hence m ≥ 2k + 1 > n and there are 2k + 1 odd

integers to label the edges. Note that a component of St(n,m) must receive

even number of odd edge labels. It follows that all the edges of this component

must receive odd integer labels. Since m ≥ 2k + 1, this component must be

St(n). Hence, n is even. It follows that m ≥ n+ 1 ≥ 3 is odd. �

Theorem 4.6. For m ≥ n and m + n ≡ 2 (mod 4), the galaxy St(n,m) is

edge-prime only if m ≥ n + 2 ≥ 4 is even, and all the edges of St(n) receive

odd labels.

Proof. Let m + n = 4k + 2. Hence m ≥ 2k + 1 ≥ n and there are 2k + 1

odd integers to label the edges. Similar to the proof of Theorem 4.5, all edges

of St(n) receive odd labels and n is even. Hence, m is even. It follows that

m ≥ n+ 2 ≥ 4. �

Corollary 4.7. The galaxy St(4, 6) is not edge-magic.

Proof. It follows by using Theorem 4.6 and checking each case directly. �

Corollary 4.8. If the galaxy St(n[2]) is edge-magic, then n is even.

Theorem 4.9. For m,n ≥ 2 and m + n ≡ 0, 3 (mod 4), the galaxy St(n,m)

is edge-prime if (m + n)(m + n + 1)/2 is the sum of two primes p and q such

that p is the sum of m distinct integers in [1,m+ n].

Proof. Suppose p =
m∑
i=1

xi, where x1, . . . , xm are distinct integers in [1,m+ n].

We label the edges of St(m) by x1, . . . , xm consecutively and those of St(n)

by the remaining labels. It is clear that we have an edge-prime labeling of

St(n,m). �

Example 4.10. We illustrate the case m + n ≡ 3 (mod 4) with the example

(n,m) = (5, 6). We see that (5 + 6)(5 + 6 + 1)/2 = 66. As 66 can be expressed

as the sum of {5, 61}, {7, 59}, {13, 53}, {19, 47}, {23, 43} and {29, 37}, it is

clear that we cannot use {5, 61}, {7, 59} and {13, 53} to construct an edge-

prime labeling. However, for the remaining three pairs we have (1, 2, 3, 4, 9),

(5, 6, 7, 8, 10, 11) for {19, 47}; (1, 2, 3, 6, 11), (4, 5, 7, 8, 9, 10) for {23, 43}; and

(1, 3, 4, 10, 11), (2, 5, 6, 7, 8, 9) for {29, 37}.

It is easy to verify that for m+n ≤ 16, the necessary condition in Theorems 4.5

and 4.6 are sufficient except m = 6, n = 4.

Conjecture 4.1. The galaxy St(n,m) is edge-prime if and only if

(1) m+ n ≡ 0, 3 (mod 4);

(2) m+ n ≡ 1 (mod 4) and m ≥ n+ 1 ≥ 3 is odd;

(3) m+ n ≡ 2 (mod 4) and m ≥ n+ 2 ≥ 4 is even except m = 6, n = 4.

Theorem 4.11. For any k ≥ 1, St(2[k]) is edge-prime.
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Proof. This is a special case of Theorem 3.3. �

Theorem 4.12. If St(3[k]) is edge-prime, then k ≡ 0, 3 (mod 4).

Proof. Observe that if the induced label of the apex vertex of a component

of St(3[k]) is even, then the labeling is not edge-prime. Thus, the induced

label of the apex vertex of each component of St(3[k]) must be odd. Hence,

the corresponding component has 1 or 3 odd edge labels. Suppose there are a

components containing 1 odd edge label. Since there are d3k/2e odd integers

to label the edges, d3k/2e = a+ 3(k − a) = 3k − 2a.

When k is even, we have 3k − 2a = 3k/2 which implies that k ≡ 0 (mod 4).

When k is odd, we have 3k − 2a = (3k + 1)/2 which implies that k ≡ 3

(mod 4). �

Conjecture 4.2. St(3[k]) is edge-prime if k ≡ 0, 3 (mod 4).

Theorem 4.13. If G is edge-prime, then G + St(2[k]) is edge-prime for all

k ≥ 1.

Proof. Let m = |E(G)|. We extend the edge-labeling of G to G + St(2[k]) by

labeling the edges of St(2[k]) by {m + 1,m + 2}, {m + 3,m + 4}, . . . , {m +

2k − 1,m + 2k} consecutively. It is clear that the extended labeling is edge-

prime. �

For 3 ≤ j ≤ 8, it is easy to verify that St(2, j), St(3, 4), St(3[3]), St(3[4]) and

St(2) +K4 are edge-prime.

Corollary 4.14. For any k ≥ 1, 3 ≤ j ≤ 8, the graphs St(2[k], j), St(2[k], 3, 4),

St(2[k], 3[3]), St(2[k], 3[4]) and St(2[k]) +K4 are edge-prime.

Let Yn be a tree with

V (Yn) = {u1, u2, vi | 1 ≤ i ≤ n} and

E(Yn) = {u1v1, u2v1, vivi+1 | 1 ≤ i ≤ n− 1},

where n ≥ 3.

Theorem 4.15. The tree Yn, n ≥ 3 is edge-prime.

Proof. Define f(u1v1) = 1, f(u2v1) = 4, f(v1v2) = 2, f(v2v3) = 3, f(vivi+1) =

i+ 2 for 3 ≤ i ≤ n− 1. Clearly, f is an edge-prime labeling. �

For n ≥ 2, let Xn be the tree with V (Xn) = {u1, u2, u3, u4, vi | 1 ≤ i ≤ n} and

E(Xn) = {u1v1, u2v1, u3vn, u4vn, vivi+1 | 1 ≤ i ≤ n− 1}.

Theorem 4.16. The tree Xn is edge-prime, n ≥ 2.

Proof. Let e1, . . . , en−1 be the successive edges of the path v1v2 · · · vn. Define

f(u1v1) = 1, f(u2v1) = 3, f(u3vn) = 2, f(u4vn) = n + 3 and f(ei) = i + 3,

1 ≤ i ≤ n− 1. It follows that f+(u1) = 1, f+(u2) = 3, f+(u3) = 2, f+(u4) =
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n + 3, f+(v1) = 8, f+(vn) = 2n + 7 and f+(vi) = 2i + 5 for 2 ≤ i ≤ n − 1.

Clearly (f+(v1), f+(u1)) = (f+(v1), f+(u2)) = 1, (f+(vn), f+(u3)) = (2n +

7, 2) = 1, (f+(vn), f+(u4)) = (2n + 7, n + 3) = (1, n + 3) = 1. Moreover,

(f+(v1), f+(v2)) = (8, 9) = 1, (f+(vn−1), f+(vn)) = (2n + 3, 2n + 7) = (2n +

3, 4) = 1 and (f+(vi), f
+(vi+1)) = (2i+ 5, 2i+ 7) = (2i+ 5, 2) = 1 for 2 ≤ i ≤

n− 2. So f is an edge-prime labeling. �

Let DS(m,n) be the double star with V (DS(m,n)) = {x, y, ui, vj | 1 ≤ i ≤
m, 1 ≤ j ≤ n} and E(DS(m,n)) = {xy, xui, yvj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Theorem 4.17. For even n = 2m ≥ 2, DS(n− 1, n) is edge-prime if n+ 1 is

prime.

Proof. Label edge xy by n + 1, label edge(s) xu1 to xun−1 by odd integers in

[1, 2n]\{n+ 1}, and label edges yv1 to yvn by even integers in [1, 2n]. We have

f+(x) = n2 and f+(y) = (n+ 1)2. It can be verified that (f+(x), f+(y)) = 1.

From the given conditions, we also have (f+(x), f+(ui)) = (f+(y), f+(vj)) = 1.

The theorem holds. �

Theorem 4.18. For odd n = 2m−1 ≥ 1, DS(n, n) is edge-prime if n2 +n+ 1

is prime.

Proof. Label edge xy by 1, label edge(s) xu1 to xun by odd integers in [3, 2n+1],

and label edges yv1 to yvn by even integers in [1, 2n + 1]. We have f+(x) =

(n + 1)2 and f+(y) = n2 + n + 1. It can be verified that (f+(x), f+(y)) = 1.

From the given conditions, we also have (f+(x), f+(ui)) = (f+(y), f+(vj)) = 1.

The theorem holds. �

Remark 4.19. All star St(n), n ≥ 3 are non-edge-prime trees of diameter 2 while

the trees Xn and Yn are edge-prime trees of diameter at least 3. Moreover, there

are sufficient conditions for trees of diameter 3 (the double star DS(m,n)) to

admit an edge-prime labeling. We propose the following conjecture.

Conjecture 4.3. All trees of diameter at least 3 are edge-prime.

5. Semi-Edge-Prime Labeling

Definition 5.1. Let G be a (p, q)-graph. A bijection f : E → [1, q] is called a

semi-edge-prime labeling if for each edge uv in E, we have (f+(u), f+(v)) = 1

or f+(u) = f+(v). A graph that admits a semi-edge-prime labeling is called a

semi-edge-prime graph.

We now give some semi-edge-prime graphs.

Theorem 5.2. For any even n ≥ 2, the double star DS(n, n) is semi-edge-

prime if n+ 1 is prime.
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Proof. Keep all notation defined in the previous section. Label edge xy by n+1,

edges xu1 to xun by odd integers in [1, 2n+ 1] \ {n+ 1} and edges yv1 to yvn
by even integers in [1, 2n+1], respectively. We have f+(x) = f+(y) = (n+1)2.

Since n+ 1 is prime, it is clear that ((n+ 1)2, f+(ui)) = ((n+ 1)2, f+(vi)) = 1.

Since f+(x) = f+(y), DS(n, n) is semi-edge-prime. �

Note that, if n + 1 > 3 is not prime, the above labeling is not edge-prime nor

semi-edge-prime.

Let C(n, n) be a bipartite graph with V (C(n, n)) = {x, y, z, w, ui, vi | 1 ≤ i ≤ n}
and E(C(n, n)) = {xz, yw, xui, yui, zvi, wvi | 1 ≤ i ≤ n}.

Theorem 5.3. For even n ≥ 2, the bipartite graph C(n, n) is semi-edge-prime.

Proof. Label the edges of C(n, n) as follows:

(1) Label edges xz and yw by n+ 1 and 3n+ 2, respectively.

(2) Label edges xu1 to xun by odd integers in [1, 2n + 1] \ {n + 1} in natural

order.

(3) Label edges zv1 to zvn by even integers in [1, 2n+ 1] in natural order.

(4) Label edges yu1 to yun by even integers in [2n + 2, 4n + 2] \ {3n + 2} in

reversed natural order.

(5) Label edges wv1 to wvn by odd integers in [2n + 2, 4n + 2] in reversed

natural order.

It is easy to verify that f+(x) = f+(z) = (n+ 1)2, f+(y) = f+(w) = (n+ 1)×
(3n + 2), and f+(ui) = f+(vi) = 4n + 3. By Lemma 3.1, (f+(x), f+(ui)) =

(f+(y), f+(ui)) = 1. Hence, C(n, n) is semi-edge-prime. �

Let Wn = Cn ∨K1 be the wheel graph of order n+ 1 and Fn = Pn ∨K1 be the

fan graph of order n+ 1.

Theorem 5.4. The wheel graph Wn is semi-edge-prime.

Proof. Let V (Wn) = {u, v1, v2, . . . , vn} and E(Wn) = {uvi, vivi+1 | 1 ≤ i ≤ n}
(vn+1 = v1). Suppose n is even. Define an edge labeling f by

(1) f(vivi+1) = i+ 1 for odd i;

(2) f(vivi+1) = n+ i for even i;

(3) f(uvi) = 2n− 2i+ 1 for 1 ≤ i ≤ n.

Observe that f+(u) = n2, f+(v1) = 4n + 1, f+(vi) = 3n + 1 for 2 ≤ i ≤ n.

Clearly, (3n+ 1, 4n+ 1) = 1. By Lemma 3.1, (n2, 4n+ 1) = (n2, 3n+ 1) = 1.

Suppose n is odd. Define an edge labeling f by

(1) f(vivi+1) = i+ 1 for odd i;

(2) f(vivi+1) = n+ i+ 1 for even i;

(3) f(uvi) = 2n− 2i+ 1 for 1 ≤ i ≤ n.

Observe that f+(u) = n2, f+(vi) = 3n − 2. By Lemma 3.1, (n2, 3n − 2) = 1.

Hence, Wn is semi-edge-prime. �
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Theorem 5.5. The fan graph Fn is semi-edge-prime.

Proof. From the wheel graph Wn and its semi-edge-prime labeling, we delete

the edge with the highest edge label to get a fan graph Fn. Observe that all

vertex labels remain unchanged except that:

(1) for even n, we have f+(vn) = n+ 1, f+(v1) = 2n+ 1.

(2) for odd n, we have f+(vn−1) = f+(vn) = n+ 2.

In both cases above, we can show that each pair of adjacent vertices have either

identical or relatively prime labels. Hence, Fn is semi-edge-prime. �

Let P (k, n) be the graph obtained from a path Pn = u1u2 · · ·un by joining every

two vertices of distant k by an edge. Clearly, E(P (k, n)) = {uiui+1, uiui+k|
1 ≤ i ≤ n, i+ k ≤ n}.

Theorem 5.6. The graph P (2, n) is semi-edge-prime if n ≥ 6.

Proof. Define an edge labeling f by f(uiui+1) = i and f(uiui+2) = 2n−2−i for

1 ≤ i ≤ n. It is easy to verify that f+(u1) = 2n−2, f+(u2) = 2n−1 = f+(un),

f+(un−1) = 3n−2, and f+(ui) = 4n−3 for 3 ≤ i ≤ n−2. It is straight forward

to show that every 2 adjacent vertex labels that are distinct are relatively prime.

Hence, P (2, n) is semi-edge-prime. �

Note that the above labelings give edge-prime labelings for P (2, 4) and P (2, 5),

respectively, and the following labelings give edge-prime labeling for P (2, 6)

and P (2, 7), respectively.
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Conjecture 5.1. For n ≥ 8, P (2, n) is edge-prime.
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